Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 14(3): e10984, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38505176

ABSTRACT

The increasing spread of marine non-indigenous species (NIS) due to the growth in global shipping traffic is causing widespread concern for the ecological and economic impacts of marine bioinvasions. Risk management authorities need tools to identify pathways and source regions of priority concern to better target efforts for preventing NIS introduction. The probability of a successful NIS introduction is affected by the likelihood that a marine species entrained in a transport vector will survive the voyage between origin and destination locations and establish an independently reproducing population at the destination. Three important risk factors are voyage duration, range of environmental conditions encountered during transit and environmental similarity between origin and destination. In this study, we aimed for a globally comprehensive approach to assembling quantifications of source-destination risk factors from every potential origin to every potential destination. To derive estimates of voyage-related marine biosecurity risk, we used computer-simulated vessel paths between pairs of ecoprovinces in the Marine Ecoregions Of the World biogeographic classification system. We used the physical length of each path to calculate voyage duration risk and the cross-latitudinal extent of the path to calculate voyage path risk. Environmental similarity risk was based on comparing annual average sea surface temperature and salinity within each ecoprovince to those of other ecoprovinces. We derived three separate sets of risk quantifications, one each for voyage duration, voyage path and environmental similarity. Our quantifications can be applied to studies that require source-destination risk estimates. They can be used separately or combined, depending on the importance of the types of source-destination risks that might be relevant to particular scientific or risk management questions or applications.

2.
Sci Rep ; 13(1): 9344, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291180

ABSTRACT

Aquaculture of New Zealand's endemic green-lipped mussel (Perna canaliculus) is an industry valued at NZ$ 336 M per annum and is ~ 80% reliant on the natural supply of wild mussel spat harvested at a single location-Te Oneroa-a-Tohe-Ninety Mile Beach (NMB)-in northern New Zealand. Despite the economic and ecological importance of this spat supply, little is known about the population connectivity of green-lipped mussels in this region or the location of the source population(s). In this study, we used a biophysical model to simulate the two-stage dispersal process of P. canaliculus. A combination of backward and forward tracking experiments was used to identify primary settlement areas and putative source populations. The model was then used to estimate the local connectivity, revealing two geographic regions of connectivity in northern New Zealand, with limited larval exchange between them. Although secondary dispersal can double the dispersal distance, our simulations show that spat collected at NMB originate from neighbouring mussel beds, with large contributions from beds located at Ahipara (southern end of NMB). These results provide information that may be used to help monitor and protect these important source populations to ensure the ongoing success of the New Zealand mussel aquaculture industry.


Subject(s)
Industry , Perna , Animals , New Zealand , Aquaculture/methods , Larva
3.
Metallomics ; 15(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37327074

ABSTRACT

The ornate spiny rock lobster, Panulirus ornatus, is an attractive candidate for aquaculture. The larval stages of spiny lobsters, known as phyllosoma, are complex with many developmental stages. Very little is known about the inorganic element composition of phyllosoma. In this study, a novel method using synchrotron X-ray fluorescence microscopy (XFM) was applied to investigate the distributions of metals potassium (K), calcium (Ca), copper (Cu), zinc (Zn), the metalloid arsenic (As), and nonmetal bromine (Br) within individual phyllosoma at stages 3, 4, and 8 of their development. For the first time, 1 µm resolution synchrotron XFM images of whole phyllosoma as well as closer examinations of their eyes, mouths, setae, and tails were obtained. Elements accumulated in certain locations within phyllosoma, providing insight into their likely biological role for these organisms. This information may be useful for the application of dietary supplementation in the future to closed larval cycle lobster aquaculture operations.


Subject(s)
Palinuridae , Animals , X-Rays , Larva , Aquaculture , Microscopy, Fluorescence
4.
PLoS One ; 18(2): e0281762, 2023.
Article in English | MEDLINE | ID: mdl-36800360

ABSTRACT

Sound is a physical stimulus that has the potential to affect various growth parameters of microorganisms. However, the effects of audible sound on microbes reported in the literature are inconsistent. Most published studies involve transmitting sound from external speakers through air toward liquid cultures of the microorganisms. However, the density differential between air and liquid culture could greatly alter the sound characteristics to which the microorganisms are exposed. In this study we apply white noise sound in a highly controlled experimental system that we previously established for transmitting sound underwater directly into liquid cultures to examine the effects of two key sound parameters, frequency and intensity, on the fermentation performance of a commercial Saccharomyces cerevisiae ale yeast growing in a maltose minimal medium. We performed these experiments in an anechoic chamber to minimise extraneous sound, and find little consistent effect of either sound frequency or intensity on the growth rate, maltose consumption, or ethanol production of this yeast strain. These results, while in contrast to those reported in most published studies, are consistent with our previous study showing that direct underwater exposure to white noise sound has little impact on S. cerevisiae volatile production and sugar utilization in beer medium. Thus, our results suggest the possibility that reported microorganism responses to sound may be an artefact associated with applying sound to cultures externally via transmission through air.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Fermentation , Maltose/pharmacology , Saccharomyces cerevisiae Proteins/metabolism , Beer
5.
BMC Genomics ; 23(1): 750, 2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36368918

ABSTRACT

BACKGROUND: Evolutionary divergence and speciation often occur at a slower rate in the marine realm due to the higher potential for long-distance reproductive interaction through larval dispersal. One common evolutionary pattern in the Indo-Pacific, is divergence of populations and species at the peripheries of widely-distributed organisms. However, the evolutionary and demographic histories of such divergence are yet to be well understood. Here we address these issues by coupling genome-wide SNP data with mitochondrial DNA sequences to test the patterns of genetic divergence and possible secondary contact among geographically distant populations of the highly valuable spiny lobster Panulirus homarus species complex, distributed widely through the Indo-Pacific, from South Africa to the Marquesas Islands. RESULT: After stringent filtering, 2020 SNPs were used for population genetic and demographic analyses, revealing strong regional structure (FST = 0.148, P < 0001), superficially in accordance with previous analyses. However, detailed demographic analyses supported a much more complex evolutionary history of these populations, including a hybrid origin of a North-West Indian Ocean (NWIO) population, which has previously been discriminated morphologically, but not genetically. The best-supported demographic models suggested that the current genetic relationships among populations were due to a complex series of past divergences followed by asymmetric migration in more recent times. CONCLUSION: Overall, this study suggests that alternating periods of marine divergence and gene flow have driven the current genetic patterns observed in this lobster and may help explain the observed wider patterns of marine species diversity in the Indo-Pacific.


Subject(s)
Palinuridae , Animals , Palinuridae/genetics , Nephropidae/genetics , Polymorphism, Single Nucleotide , Genome , Gene Flow , DNA, Mitochondrial/genetics , Phylogeny , Genetic Variation
6.
Sci Rep ; 12(1): 16783, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36202873

ABSTRACT

The emergence of high resolution population genetic techniques, such as genotyping-by-sequencing (GBS), in combination with recent advances in particle modelling of larval dispersal in marine organisms, can deliver powerful new insights to support fisheries conservation and management. In this study, we used this combination to investigate the population connectivity of a commercial deep sea lobster species, the New Zealand scampi, Metanephrops challengeri, which ranges across a vast area of seafloor around New Zealand. This species has limited dispersal capabilities, including larvae with weak swimming abilities and short pelagic duration, while the reptant juvenile/adult stages of the lifecycle are obligate burrow dwellers with limited home ranges. Ninety-one individuals, collected from five scampi fishery management areas around New Zealand, were genotyped using GBS. Using 983 haplotypic genomic loci, three genetically distinct groups were identified: eastern, southern and western. These groups showed significant genetic differentiation with clear source-sink dynamics. The direction of gene flow inferred from the genomic data largely reflected the hydrodynamic particle modelling of ocean current flow around New Zealand. The modelled dispersal during pelagic larval phase highlights the strong connectivity among eastern sampling locations and explains the low genetic differentiation detected among these sampled areas. Our results highlight the value of using a transdisciplinary approach in the inference of connectivity among populations for informing conservation and fishery management.


Subject(s)
Gene Flow , Nephropidae , Animals , Fisheries , Genetics, Population , Haplotypes , Humans , Larva/genetics
7.
J Trace Elem Med Biol ; 74: 127071, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36116231

ABSTRACT

BACKGROUND: A period of seismic activity starting in 2010 coincided with a decline in commercial catches of wild seed mussels in a major aquaculture production region of New Zealand. Analyses of over 40 years of mussel seed catch data from in the Pelorus and Kenepuru Sounds, confirmed a marked decline since 2010 in catches of the preferred, green-lipped mussel (Perna canaliculus), the larvae of which is known to have low tolerance of heavy metals in seawater. METHODS: Heavy metal mean concentrations were measured throughout the Pelorus and Kenepuru Sounds. The concentrations ranged from < 0.60-3.24, < 16.94-74.35, < 1.47-4.00, 2.23-19.02, 1.86-3.29 and 0.12-0.52 µg L-1 for Cr, Fe, Cu, Zn, As, and Cd, respectively. Seawater from six locations in the Sounds, historically associated with high commercial catches of settling mussel larvae, was used for experimental rearing of green-lipped mussel larvae. RESULTS: No mussel embryos survived when incubated in these seawater samples. The mean concentrations of Cr, Fe, As, and Cd were significantly higher in the seawater from the Sounds than in the hatchery seawater. A higher concentration of one or a combination of these heavy metals could be the cause of the poor larval survival. These findings could be crucial for the sustainability of mussel farming in the area.


Subject(s)
Metals, Heavy , Perna , Water Pollutants, Chemical , Animals , Cadmium/analysis , Environmental Monitoring , Larva , Metals, Heavy/analysis , Seawater , Water Pollutants, Chemical/analysis
8.
J Exp Biol ; 225(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35647661

ABSTRACT

The anaesthetic isoeugenol has been used as metabolic suppressant for commercial transport of live lobsters in order to decrease energy expenditure and improve survival. Given the central role of mitochondria in metabolism and structural similarities of isoeugenol to the mitochondrial electron carrier coenzyme Q, we explored the influence on mitochondrial function of isoeugenol. Mitochondrial function was measured using high-resolution respirometry and saponin-permeabilised heart fibres from the Australasian red spiny lobster, Jasus edwardsii. Relative to vehicle (polysorbate), isoeugenol inhibited respiration supported by complex I (CI) and cytochrome c oxidase (CCO). While complex II (CII), which also reduces coenzyme Q, was largely unaffected by isoeugenol, respiration supported by CII when uncoupled was depressed. Titration of isoeugenol indicates that respiration through CI has a half-maximal inhibitory concentration (IC50) of 2.4±0.1 µmol l-1, and a full-maximal inhibitory concentration (IC100-) of approximately 6.3 µmol l-1. These concentrations are consistent with those used for transport and euthanasia of J. edwardsii and indicate that CI is a possible target of isoeugenol, like many other anaesthetics with quinone-like structures.


Subject(s)
Anesthetics , Crangonidae , Palinuridae , Animals , Eugenol/analogs & derivatives , Mitochondria , Ubiquinone
9.
Molecules ; 26(23)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34885824

ABSTRACT

This study investigated the impact of varying sound conditions (frequency and intensity) on yeast growth, fermentation performance and production of volatile organic compounds (VOCs) in beer. Fermentations were carried out in plastic bags suspended in large water-filled containers fitted with underwater speakers. Ferments were subjected to either 200-800 or 800-2000 Hz at 124 and 140 dB @ 20 µPa. Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was used to identify and measure the relative abundance of the VOCs produced. Sound treatment had significant effects on the number of viable yeast cells in suspension at 10 and 24 h (p < 0.05), with control (silence) samples having the highest cell numbers. For wort gravity, there were significant differences between treatments at 24 and 48 h, with the silence control showing the lowest density before all ferments converged to the same final gravity at 140 h. A total of 33 VOCs were identified in the beer samples, including twelve esters, nine alcohols, three acids, three aldehydes, and six hop-derived compounds. Only the abundance of some alcohols showed any consistent response to the sound treatments. These results show that the application of audible sound via underwater transmission to a beer fermentation elicited limited changes to wort gravity and VOCs during fermentation.


Subject(s)
Beer/analysis , Fermentation , Saccharomyces cerevisiae/growth & development , Sound , Volatile Organic Compounds/analysis , Cell Count , Esters/analysis , Hydrogen-Ion Concentration , Principal Component Analysis , Saccharomyces cerevisiae/cytology
10.
Metabolites ; 11(9)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34564421

ABSTRACT

The biological effect of sound on microorganisms has been a field of interest for many years, with studies mostly focusing on ultrasonic and infrasonic vibrations. In the audible range (20 Hz to 20 kHz), sound has been shown to both increase colony formation and disrupt microbial growth, depending upon the organism and frequency of sound used. In the brewer's yeast Saccharomyces cerevisiae, sound has been shown to significantly alter growth, increase alcohol production, and affect the metabolite profile. In this study, S. cerevisiae was exposed to a continuous 90 dB @ 20 µPa tone at different frequencies (0.1 kHz, 10 kHz, and silence). Fermentation characteristics were monitored over a 50-h fermentation in liquid malt extract, with a focus on growth rate and biomass yield. The profile of volatile metabolites at the subsequent stationary phase of the ferment was characterised by headspace gas chromatography-mass spectrometry. Sound treatments resulted in a 23% increase in growth rate compared to that of silence. Subsequent analysis showed significant differences in the volatilomes between all experimental conditions. Specifically, aroma compounds associated with citrus notes were upregulated with the application of sound. Furthermore, there was a pronounced difference in the metabolites produced in high- versus low-frequency sounds. This suggests industrial processes, such as beer brewing, could be modulated by the application of audible sound at specific frequencies during growth.

11.
Glob Chang Biol ; 27(19): 4839-4848, 2021 10.
Article in English | MEDLINE | ID: mdl-34254409

ABSTRACT

From midnight of 26 March 2020, New Zealand became one of the first countries to enter a strict lockdown to combat the spread of COVID-19. The lockdown banned all non-essential services and travel both on land and sea. Overnight, the country's busiest coastal waterway, the Hauraki Gulf Marine Park, became devoid of almost all recreational and non-essential commercial vessels. An almost instant change in the marine soundscape ensued, with ambient sound levels in busy channels dropping nearly threefold the first 12 h. This sudden drop led fish and dolphins to experience an immediate increase in their communication ranges by up to an estimated 65%. Very low vessel activity during the lockdown (indicated by the presence of vessel noise over the day) revealed new insights into cumulative noise effects from vessels on auditory masking. For example, at sites nearer Auckland City, communication ranges increased approximately 18 m (22%) or 50 m (11%) for every 10% decrease in vessel activity for fish and dolphins, respectively. However, further from the city and in deeper water, these communication ranges were increased by approximately 13 m (31%) or 510 m (20%). These new data demonstrate how noise from small vessels can impact underwater soundscapes and how marine animals will have to adapt to ever-growing noise pollution.


Subject(s)
Animal Communication , COVID-19 , Dolphins , Acoustics , Animals , Communicable Disease Control , Humans , SARS-CoV-2
12.
Aquat Toxicol ; 228: 105645, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33010639

ABSTRACT

The toxicity of heavy metals commonly impacts the survival of crustacean and bivalve larvae in hatchery culture, and this has led to the widespread use of EDTA to decrease this toxicity. Since EDTA has a very poor biodegradability leading to potential persistent environmental effects, alternative methods to prevent heavy metal toxicity to shellfish larvae are needed. EDDS is a biodegradable potential alternative to EDTA for this application and was tested as a treatment of the seawater used for rearing aquaculture Greenshell™ mussel (Perna canaliculus) larval embryos in this study. Mussel embryos reared with EDTA or EDDS had significantly better survival than without. The concentrations and spatial distributions of heavy metals in D-veliger larvae as determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and X-ray Fluorescence Microscopy (XFM) suggested that chelating agents increased the levels of calcium in larvae while they reduced the concentration of zinc. In addition, where decreased accumulation of the other heavy metals was not observed, chelating agents affected their distribution within the larvae, especially for copper and arsenic. This is the first study to test the use of EDDS for aquaculture hatchery application and shows that EDDS is an effective biodegradable alternative to EDTA that can mitigate the effects of heavy metals for shellfish larval rearing.


Subject(s)
Aquaculture , Chelating Agents/pharmacology , Perna/growth & development , Animals , Biodegradation, Environmental/drug effects , Larva/drug effects , Metals/analysis , Microscopy, Fluorescence , Perna/drug effects , Seawater/chemistry , Survival Analysis , Water Pollutants, Chemical/toxicity
13.
Mar Environ Res ; 156: 104918, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32174338

ABSTRACT

Spiny lobster post-larvae undertake an extensive migration from the open ocean to the coast, during which time their swimming is fueled solely by energy reserves accumulated through their preceding larval phase. We assessed the influence of future ocean temperatures on the swimming behavior and energy use of migrating post-larvae of Sagmariasus verreauxi, by experimentally swimming post-larvae for up to 6 days at three temperatures and measuring the lipid and protein used, and observing their time spent actively swimming. Increasing the temperature from 17 °C to 23 °C doubled the energy utilized by post-larvae while swimming, while also reducing the time they spent swimming by three times. Therefore, increasing ocean temperatures appear to greatly affect the energetic cost and efficiency of shoreward migration of post-larvae in this lobster species, with the potential to markedly impact post-larval recruitment into coastal populations under future scenarios of ocean warming.


Subject(s)
Animal Migration , Energy Metabolism , Palinuridae/physiology , Seawater , Temperature , Animals , Environmental Monitoring , Larva/physiology , Lipids , Oceans and Seas , Proteins
14.
Fish Shellfish Immunol ; 98: 748-757, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31726098

ABSTRACT

The long-term effects of three dietary probiotics on rainbow trout during grow-out (mean body weight = 250 ±â€¯50 g) were investigated by feeding for 130 days on eight diet treatments supplemented with Lactobacillus buchneri, L. fermentum and Saccharomyces cerevisiae at 107 CFU/g, singularly or in combination. Fish samples were taken for biochemical and immunological analysis in addition to growth performance indices at days 30 and 130 of the experiment. The expression levels of TNF-α and IL-1ß genes were also measured at day 130. A positive effect on food conversion was observed in rainbow trout with dietary inclusion of S. cerevisiae (P < 0.05) over 130 days. Also, the total number of white blood cells and their differential count (blood neutrophils, lymphocytes and monocytes), as well as respiratory burst activity were all significantly affected by different treatments at 130 days (P < 0.05). Moreover, at 130 days there was a significant increase in the expression of TNF-α and IL-1ß in yeast present treatment compared to the control group (P < 0.05), but no significant difference in the combined probiotic treatments from control group. Yeast and L. buchneri showed a contrary effect on the immune gene expression regulation. Serum cholesterol was significantly lower in all treatments receiving yeast as a dietary probiotic, either alone or in combination with other probiotics. However, none of the probiotic treatments had a significant effect on trout growth performance, or total protein, albumin, globulin, triglyceride and the red blood cell count after 30 or 130 days. Overall, the results suggest that inclusion of a single dietary probiotic, especially S. cerevisiae, in rainbow trout during grow-out has a greater positive effect than combinations of probiotics on the immune system.


Subject(s)
Lactobacillus/chemistry , Limosilactobacillus fermentum/chemistry , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/immunology , Probiotics/pharmacology , Saccharomyces cerevisiae/chemistry , Animal Feed/analysis , Animals , Cytokines/genetics , Cytokines/metabolism , Diet/veterinary , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression , Immunity, Innate , Oncorhynchus mykiss/blood , Random Allocation
15.
Aquat Toxicol ; 217: 105330, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31704581

ABSTRACT

Heavy metal pollution is a concern in many coastal locations where it is frequently deleterious to the survival of young shellfish. Consequently, a great number of commercial shellfish hatcheries around the world rely on the addition of ethylenediaminetetraacetic acid (EDTA) to seawater to ensure successful larval production. Despite the importance of this practice to global shellfish production the mode of action of EDTA in larval production remains undetermined. It is assumed EDTA chelates heavy metals in seawater preventing interference in larval development. Larval mussels (Perna canaliculus) raised in seawater with 3 µM EDTA had a 15 fold higher yield than those without EDTA. The concentration and spatial arrangement of heavy metals in larvae as determined by Inductively Coupled Plasma Mass Spectrometry (ICPMS) and X-ray Fluorescence Microscopy (XFM) was consistent with reduced bioavailability of several metals, especially copper and zinc. This is the first study to confirm the effectiveness of EDTA for managing metal pollution commonly encountered in coastal shellfish hatcheries.


Subject(s)
Edetic Acid/pharmacology , Metals, Heavy/toxicity , Perna/growth & development , Seawater/chemistry , Water Pollutants, Chemical/toxicity , Animals , Chelating Agents , Environmental Pollution/analysis , Larva/drug effects , Metals, Heavy/analysis
16.
Dis Aquat Organ ; 132(3): 181-189, 2019 Jan 24.
Article in English | MEDLINE | ID: mdl-31188133

ABSTRACT

Apicomplexan-X (APX) is a significant pathogen of the flat oyster Ostrea chilensis in New Zealand. The life cycle and host range of this species are poorly known, with only the zoite stage identified. Here, we report the use of molecular approaches and histology to confirm the presence of APX in samples of green-lipped mussels Perna canaliculus, Mediterranean mussels Mytilus galloprovincialis and hairy mussels Modiolus areolatus collected from widely distributed locations in New Zealand. The prevalence of APX infection estimated by PCR was 22.2% (n = 99) and 50% (n = 30) in cultured green-lipped mussels from Nelson and Coromandel, respectively; 0.8% (n = 258), 3.3% (n = 150) and 35.3% (n = 17) in wild Mediterranean mussels from Nelson, Foveaux Strait and Golden Bay, respectively; and 46.7% (n = 30) in wild hairy mussels from Foveaux Strait. Histology detected all cases of PCR that were positive with APX and appeared to be more sensitive. The prevalence of APX estimated by histology in green-lipped mussels from Coromandel was 60% versus 50% by PCR, and 4.3%, 10.7% and 52.9% by histology versus 0.8%, 3.3% and 35.3% by PCR in wild Mediterranean mussels from Nelson, Foveaux Strait and Golden Bay, respectively. The specific identity of the parasite found in mussels was determined by sequencing PCR products for a portion (676 bp) of the 18S rRNA gene; the resulting sequences were 99-100% similar to APX found in flat oysters. Phylogenetic analyses also confirmed that all isolates from green-lipped, Mediterranean and hairy mussels grouped with APX isolates previously identified from flat oysters. This study indicates the wide geographical distribution of APX and highlights the potentially multi-host specific distribution of the parasite in commercially important bivalve shellfish.


Subject(s)
Ostrea , Animals , New Zealand , Phylogeny , Polymerase Chain Reaction
17.
FEMS Microbiol Ecol ; 95(6)2019 06 01.
Article in English | MEDLINE | ID: mdl-31107952

ABSTRACT

Spiny lobsters are among the most valuable seafood products, but their commercial value is greatly diminished by tail fan necrosis (TFN), an unsightly blackening and erosion of the posterior margins on the abdomen. The condition results from bacterial incursion following physical damage to the cuticle. In this current study, the bacterial communities on the cuticle of tail fans of wild spiny lobsters with and without TFN were examined using 16S rDNA Illumina sequencing to identify whether there is a group of bacteria associated with TFN. The bacterial communities in the affected cuticle had significantly less richness, diversity and evenness, but greater variability between samples than those in unaffected cuticle. There were 21 phylotypes closely associated with TFN, of which, those belonging to Aquimarina, Flavobacterium, Neptunomonas, Streptomyces, Flavobacteriaceae and Thiohalorhabdales were most important. The affected cuticle samples were clustered into two microbial colonization states, each characterized by distinct phylotypes that are closely associated with TFN, suggesting different phylotypes were associated with different microbial colonization states of TFN. These bacteria appear to develop their association through opportunistic pathways created by the provision of changes in the bacterial habitat associated with injury to the cuticle or compromised immunity subsequent to the injury.


Subject(s)
Bacteria/isolation & purification , Palinuridae/microbiology , Animals , Bacteria/classification , DNA, Bacterial , DNA, Ribosomal , Microbiota , Molecular Typing
18.
PLoS One ; 14(4): e0214996, 2019.
Article in English | MEDLINE | ID: mdl-30939147

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0211722.].

19.
Biofouling ; 35(2): 259-272, 2019 02.
Article in English | MEDLINE | ID: mdl-30983415

ABSTRACT

The efficient seeding of juvenile mussels is critical to the sustainability and profitability of mussel aquaculture. However, seeding mussels is highly inefficient, with many juveniles being lost in the following few months. One possible cause of these losses could be the development of biofouling assemblages. Therefore, the relationships between biofouling accumulation and losses of juveniles were assessed. Losses of juvenile mussels were initially high (42.9-49.1% over approximately one to two weeks), with lower rates of loss over the following four to five months. Biofouling development followed a successional pattern beginning with colonisation by amphipods, subsequent establishment of macroalgae, and the formation of an assemblage dominated by mussels and sessile invertebrates. However, biofouling development did not play a major role in the loss of juveniles. Rather, large-scale losses of mussels occurred shortly after seeding when biofouling was scant, suggesting alternative causes of loss were in operation.


Subject(s)
Aquaculture/methods , Biofouling/prevention & control , Bivalvia/growth & development , Animals , New Zealand
20.
PLoS One ; 14(2): e0211722, 2019.
Article in English | MEDLINE | ID: mdl-30707747

ABSTRACT

The influence of physical oceanographic processes on the dispersal of larvae is critical for understanding the ecology of species and for anticipating settlement into fisheries to aid long-term sustainable harvest. This study examines the mechanisms by which ocean currents shape larval dispersal and supply to the continental shelf-break, and the extent to which circulation determines settlement patterns using Sagmariasus verreauxi (Eastern Rock Lobster, ERL) as a model species. Despite the large range of factors that can impact larval dispersal, we show that within a Western Boundary Current system, mesoscale circulation explains broad spatio-temporal patterns of observed settlement including inter-annual and decadal variability along 500 km of coastline. To discern links between ocean circulation and settlement, we correlate a unique 21- year dataset of observed lobster settlement (i.e., early juvenile & pueruli abundance), with simulated larval settlement. Simulations use outputs of an eddy-resolving, data-assimilated, hydrodynamic model, incorporating ERL spawning strategy and larval duration. The latitude where the East Australian Current (EAC) deflects east and separates from the continent determines the limit between regions of low and high ERL settlement. We found that years with a persistent EAC flow have low settlement while years when mesoscale eddies prevail have high settlement; in fact, mesoscale eddies facilitate the transport of larvae to the continental shelf-break from offshore. Proxies for settlement based on circulation features observed with satellites could therefore be useful in predicting broadscale patterns of settlement orders of magnitudes to guide harvest limits.


Subject(s)
Animal Distribution/physiology , Palinuridae/metabolism , Animals , Australia , Computer Simulation , Conservation of Natural Resources/methods , Fisheries , Hydrodynamics , Larva , Oceanography , Physiological Phenomena , Seafood , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...